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Abstract 

The transformation of power systems—driven by renewable integration, deregulated markets, 

digital substations, and distributed energy resources (DERs)—has challenged traditional 

protection mechanisms. Fixed threshold-based relays often fail to address dynamic grid 

conditions, uncertain fault currents, bi-directional power flows, and evolving grid topologies. 

Artificial Intelligence (AI) has emerged as a promising solution due to its ability to learn 

nonlinear relationships, process real-time data, and enable adaptive decision-making. This 

paper presents a comprehensive analysis of AI integration in modern power system protection 

before 2021, discussing key techniques, capabilities, challenges, and implementation barriers. 

The limitations relating to data requirements, interpretability, cybersecurity, compatibility 

with legacy infrastructure, generalization, and regulatory issues are critically examined. A set 

of research directions is proposed based on hybrid AI–physical models, explainable AI (XAI), 

PMU-driven dynamic protection, and AI-enabled Digital Twin technologies. This review aims 

to bridge the gap between theoretical advancements and practical deployment of AI-based 

protection systems. 
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1. Introduction 

Power systems are evolving from static, centrally controlled networks to dynamic cyber-

physical energy ecosystems. The increasing presence of renewable energy sources, inverter-

based generators, microgrids, and active distribution networks introduces complexity into fault 

behaviour and protection coordination. Traditional protection schemes rely on predefined 

settings, impedance calculations, and deterministic logic. Such approaches are insufficient 

under modern grid conditions, particularly during non-classical faults, uncertain fault currents, 

and frequent topology changes. Furthermore, the transition towards decentralized generation 

and bidirectional power flows has significantly challenged conventional relay coordination 

strategies. Fault signatures in inverter-dominated networks often lack characteristic current 

magnitudes, making threshold-based protection increasingly unreliable. Additionally, 

fluctuations in power availability, rapid changes in load demand, and integration of intermittent 

renewable sources produce dynamic operating states where static relay settings become 

inadequate. These issues highlight the need for intelligent and adaptive protection frameworks 

capable of learning from data, responding autonomously to disturbances, and evolving with 

system conditions. The emergence of advanced metering infrastructure (AMI), Phasor 

Measurement Units (PMUs), and Intelligent Electronic Devices (IEDs) has enabled high-

resolution data collection from substations and transmission networks. These devices generate 

synchronized and time-stamped data that capture the transient behaviour of power systems with 

greater fidelity. AI and Machine Learning (ML) methods can utilize this data for real-time fault 

identification, high-impedance fault detection, predictive decision-making, and adaptive relay 

settings. Signal processing techniques such as Discrete Wavelet Transform (DWT) and 

Principal Component Analysis (PCA), when combined with ANN, SVM, or Deep Learning 

models, have demonstrated substantial potential in identifying fault patterns and improving 

diagnostic accuracy. However, practical adoption remains limited due to concerns involving 

reliability, interpretability, data scarcity, cybersecurity risks, and regulatory compliance. AI-

based models often operate as “black boxes,” which restricts utility acceptance because 

protection systems must provide fully explainable and auditable decisions. Moreover, 

integrating AI with existing substation infrastructure requires compatibility across 

communication protocols, hardware platforms, latency constraints, and protection response 

times. Regulatory frameworks also demand extensive testing, validation, and certification 

before deployment, which further delays implementation. Research progress prior to 2021 was 

promising but largely confined to simulation environments and laboratory prototypes. Most 

publications demonstrated accuracy in fault diagnosis but lacked deployment strategies for 

real-world conditions were inconsistent measurements, incomplete datasets, and 

communication failures are common. Field data variability, PMU noise, and representativeness 

issues present significant challenges to building robust AI models that generalize well across 

operating scenarios. 

In this context, this paper presents a comprehensive review of AI-based protection 

methodologies developed before 2021, outlining their capabilities, limitations, and 

applicability to practical systems. Emphasis is placed on fault classification, high-impedance 

fault detection, adaptive relaying, PMU-based dynamic protection, and hybrid AI–physics-

driven models. A structured analysis of challenges and prospects is provided, with emphasis 

on strategies to enable practical implementation—such as explainable AI, Digital Twin 
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validation environments, interoperability frameworks, and standardized testing protocols. By 

bridging the gap between theoretical advancements and operational deployment, AI-driven 

protection can support the development of future self-healing, resilient, and adaptive power 

systems capable of addressing the challenges of a decentralized and data-driven energy 

landscape. 

2. Evolution of Protection Systems 

2.1 Conventional and Numerical Protection 

Traditional power-system protection schemes primarily rely on overcurrent, distance, 

differential, and directional relays, each designed to detect specific fault signatures based on 

well-established analytical criteria. These electromechanical and static relays operate using 

fixed pickup values, time–current characteristics, and zone settings, which require periodic 

manual tuning to match evolving grid conditions. While they are robust and widely deployed, 

their inability to dynamically respond to system disturbances—such as rapid load fluctuations, 

increased penetration of renewable sources, or changes in network topology—poses limitations 

in modern grids. The introduction of numerical relays marked a major technological shift by 

incorporating microprocessors, digital signal processing (DSP), and advanced filtering 

algorithms. Numerical relays significantly improved selectivity, computation speed, self-

diagnostics, and event recording capabilities. Their ability to process sampled values, perform 

real-time phasor estimation, and integrate multiple protection functions within a single device 

enhanced both efficiency and reliability. Nevertheless, numerical relays still operate 

fundamentally on predetermined thresholds and logic structures. Even though setting groups 

and adaptive elements exist, they cannot fully adjust to sudden and unpredictable grid changes 

without manual intervention or predefined rules. This makes them less effective in highly 

dynamic systems with distributed energy resources (DERs), inverter-based power plants, and 

bidirectional power flows, where fault signatures are often non-traditional and variable. 

As power systems migrate toward increased decentralization and variability, the limitations of 

both conventional and numerical protection methods become more apparent. These challenges 

are driving interest in adaptive, communication-assisted, and data-driven protection 

philosophies that can autonomously modify settings, learn fault patterns, and respond to 

evolving operating conditions in real time. 

2.2 Smart Grid and Advanced Protection 

The transition toward smart grids have fundamentally changed the requirements of protection 

systems, necessitating solutions that are adaptive, communication-enabled, and data-driven. 

Modern power networks are increasingly characterized by high penetration of distributed 

energy resources (DERs), inverter-based generation, electric vehicles (EVs), and other non-

linear, power-electronic-dominated loads. These elements introduce variability in fault 

currents, alter system inertia, and often produce fault signatures that differ significantly from 

those encountered in conventional synchronous-generator-based systems. As a result, 

traditional deterministic protection strategies, designed around predictable current magnitudes 

and symmetrical fault conditions, often struggle to maintain sensitivity and selectivity. 
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Advanced protection frameworks in smart grids leverage wide-area measurement systems 

(WAMS), phasor measurement units (PMUs), and high-speed communication channels to 

achieve coordinated decision-making across multiple protection zones. This allows relays to 

access real-time system information, enabling dynamic adjustment of settings, self-adaptation 
to network reconfigurations, and improved situational awareness under stressed operating 

conditions. Artificial intelligence (AI) and machine learning (ML) have emerged as key 

enablers of next-generation protection. AI-based protection schemes utilize data-driven models 

capable of learning complex patterns in system disturbances and differentiating between 

normal, transient, and fault conditions. Techniques such as artificial neural networks (ANNs), 

support vector machines (SVMs), decision trees, random forests, and deep learning models 

have been applied for fault classification, fault location, and event prediction. These approaches 

can process high-dimensional data, handle non-linear relationships, and adapt to evolving 

operating conditions without requiring manual recalibration. Importantly, they offer potential 

resilience against the variability and uncertainty introduced by DERs. 

However, the adoption of AI-based protection also introduces new challenges. These include 

the need for large and high-quality training datasets, robustness against cyber threats, explain 

ability of decision-making processes, and the reliability of ML models under unseen or 

abnormal scenarios. Despite these concerns, AI-driven protection systems represent a 

promising direction toward achieving fully adaptive, autonomous, and resilient smart-grid 

protection strategies. 

2.3 Motivation for AI Integration 

The deployment of artificial intelligence within modern protection systems is driven by several 

critical needs associated with increasingly complex and dynamic power networks: 

Real-time decision-making: 

As modern grids operate closer to their stability limits, protection systems must process large 

volumes of data and react almost instantaneously to disturbances. AI algorithms—particularly 

those optimized for streaming data and edge computation—enable faster detection, 

classification, and response compared to rule-based or threshold-driven methods. This is 

especially important in systems with rapid changes caused by inverter-based resources, where 

fault characteristics evolve within milliseconds. 

Enhanced fault detection accuracy: 

Traditional protective relays rely on fixed pickup currents and predefined logic, which can lead 

to disoperation in networks experiencing distorted waveforms, harmonics, or low fault 

currents. AI-based models can analyse complex patterns in voltage and current signals, 

improving the accuracy of fault classification, distinguishing between internal and external 

faults, and detecting high-impedance or evolving faults that conventional relays often miss. 

Adaptation to grid dynamics: 

With increasing integration of DERs, micro grids, and flexible loads, grid characteristics such 

as fault levels, power flow directions, and inertia become highly variable. AI models can adapt 

to these changes in near real time by learning from operational data, enabling self-tuning 

protection schemes that remain reliable even under fluctuating or uncertain conditions. 

Reduced reliance on manual relay coordination: 

Traditional coordination of protection settings requires extensive offline studies, periodic 

adjustments, and manual intervention to accommodate network modifications. AI-driven tools 
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can automate coordination studies, continuously optimize settings, and predict future 

operational scenarios. This reduces human error, speeds up engineering processes, and supports 

scalable protection strategies for large, decentralized power systems. 

Improved resilience during cyber-physical disturbances: 
As smart grids become more interconnected, they face heightened risks from cyberattacks, data 

corruption, and coordinated attacks that target both physical and communication infrastructure. 

AI techniques—such as anomaly detection models, graph-based cyber monitoring, and data-

driven intrusion detection—can identify abnormal patterns, recognize stealthy cyber threats, 

and support resilient protection actions. This dual-layer defines enhances overall system 

stability and reliability. 

3. AI Techniques Used in Protection Schemes 

AI Technique Application in Protection 

ANN Fault classification, high-impedance fault detection 

SVM Multi-class fault classification 

Decision Trees Relay coordination, fault location 

Fuzzy Logic Adaptive relaying under uncertainties 

Deep Learning Pattern recognition using raw waveforms 

Hybrid AI–Signal Processing Improved fault diagnosis using DWT + ANN 

Reinforcement Learning Adaptive settings in changing networks 

Table 1: AI Techniques Used in Protection Schemes 

Among these, ANN and SVM emerged as the most widely used methods prior to 2021. Deep 

learning was in its early research phase, with limited real-time field implementations due to 

computational demands. 

 

4. Applications of AI in Power System Protection 

4.1 Fault Detection and Classification 

AI-based classifiers significantly enhance the capability of protection systems to accurately 

identify fault types, faulted phases, and fault inception times by analysing current, voltage, or 

traveling-wave signals. Machine learning models such as Artificial Neural Networks (ANNs), 

Support Vector Machines (SVMs), Random Forests, and Convolutional Neural Networks 

(CNNs) have demonstrated high accuracy in controlled simulation environments. They excel 

at capturing nonlinear features and subtle waveform distortions that traditional relays overlook. 

However, these models often exhibit limitations in data generalization when confronted with 

real-world disturbances, noise, or previously unseen grid operating conditions. Ongoing 
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research focuses on domain adaptation, transfer learning, and synthetic data generation to 

address these generalization challenges. 

4.2 High-Impedance Fault (HIF) Detection 

Traditional overcurrent and distance relays often fail to detect high-impedance faults due to 
low, fluctuating, or distorted fault currents that resemble normal load variations. AI techniques 

improve detection by extracting weak features through time–frequency analysis tools such as 

the Wavelet Transform, Hilbert–Huang Transform, and Empirical Mode Decomposition. Once 

meaningful features are extracted, classifiers such as ANNs, SVMs, fuzzy logic systems, or 

deep learning architectures identify anomalous patterns indicative of HIFs. Recent studies also 

explore graph-based neural networks and ensemble learning to improve robustness against 

noise and measurement uncertainty. 

4.3 Adaptive Relaying 

AI enables adaptive protection schemes where relay settings dynamically adjust in response to 

real-time changes in load levels, DER outputs, or network reconfigurations. Reinforcement 

Learning (RL) approaches, including Q-learning and Deep Reinforcement Learning (DRL), 

have shown promise in autonomously determining optimal protection settings by learning from 

system behaviour over time. These methods can theoretically reduce disoperation during 

abnormal or rapidly changing grid conditions. However, the lack of large-scale field validation, 

challenges in ensuring stable training, and cybersecurity concerns limit current deployment. 

Hybrid approaches integrating rule-based logic with AI-driven adaptation are gaining attention 

as more practical solutions. 

4.4 Fault Location Estimation 

AI enhances the accuracy of fault location, especially in complex transmission and distribution 

networks with distributed generators. Hybrid techniques combining Discrete Wavelet 

Transform (DWT) with machine learning models such as ANNs, SVMs, or Long Short-Term 

Memory (LSTM) networks improve the precision of locating the faulted section by capturing 

transient behaviour and extracting multiresolution features. These models can effectively 

handle faults occurring under varying load conditions, different fault resistances, and 

communication delays in wide-area measurement systems. Recent developments also explore 

PMU-based data fusion and physics-informed neural networks (PINNs) for more reliable fault 

location under low-inertia grid conditions. 

5. Challenges and Limitations 

5.1 Data Scarcity and Quality Issues 

AI models require large volumes of labelled, diverse, and high-resolution fault data to achieve 

reliable performance. In real power systems, faults occur infrequently, making it difficult to 

gather representative datasets under varied operating conditions. Simulated data, although 

useful, cannot fully capture real-world noise, equipment aging effects, evolving load patterns, 
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inverter-based distortions, or communication delays. Additionally, PMU and IED 

measurements may suffer from synchronization errors, missing samples, and harmonic 

interference, which degrade the quality of training datasets. Ensuring standardized, high-

quality data pipelines remains a major challenge. 

5.2 Black-Box Nature and Lack of Trust 

Many AI models—particularly deep learning, LSTMs, CNNs, and ensemble methods—operate 

as “black boxes,” offering limited insight into how decisions are made. This poses a barrier in 

protection engineering, where deterministic and transparent logic is mandatory to ensure 

system safety, comply with regulatory standards, and enable post-event analysis. The lack of 

interpretability limits engineer confidence, complicates certification processes, and creates 

concerns about unknown failure modes. Research into explainable AI (XAI) for protection is 

emerging but still not mature enough for widespread deployment. 

5.3 Generalization and Overfitting 

AI models often exhibit strong accuracy on training datasets but struggle to generalize to 

unseen or rare operating conditions, such as unusual DER configurations, evolving fault 

resistances, or atypical transient events. Overfitting remains a persistent challenge, especially 

when training datasets are limited or biased. Continuous retraining and periodic validation are 

required to maintain performance, increasing operational complexity. Moreover, rapid changes 

in grid characteristics due to DER integration can quickly render pre-trained models obsolete. 

5.4 Cybersecurity Concerns 

AI-based protection frameworks rely heavily on communication networks, cloud platforms, 

edge computation, and remote data exchange. This dependency introduces new attack surfaces. 

Potential cyber threats include spoofing of sensor measurements, false data injection attacks 

(FDIAs), adversarial machine learning attacks, data poisoning during training, and denial-of-

service (DOS) attacks targeting communication links. Since protection decisions must be made 

rapidly and reliably, even minor data integrity compromises can lead to relay disoperation or 

system instability. Ensuring secure, authenticated, and tamper-proof data pathways is therefore 

essential. 

5.5 Legacy Infrastructure and Integration Issues 

A significant portion of global substations still employ electromechanical or early-generation 

numerical relays. Integrating AI-enabled protection systems into these legacy infrastructures 

requires extensive retrofitting, hardware upgrades, and interoperability assessments. 

Communication protocols may not support high-frequency data streams, and many old systems 

lack the computational capacity to process AI-based algorithms. These constraints create 

economic and logistical barriers for utilities, especially in developing regions where 

modernization budgets are limited. 

5.6 Computational Burden 
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Real-time protection requires decision-making within millisecond-scale windows. Highly 

complex AI and deep learning models—such as transformer-based networks or deep CNNs—

often require significant computational power, making them difficult to deploy without 

specialized hardware like FPGAs, GPUs, or edge accelerators. Even when hardware is 
available, model latency, memory requirements, and energy consumption may pose operational 

challenges. Ensuring deterministic timing behaviour is also difficult, as many AI models have 

variable execution times under different input loads. 

5.7 Standardization and Regulatory Barriers 

Protection systems operate under stringent industry standards (IEC, IEEE, NERC). AI-based 

methods lack established testing frameworks, certification procedures, and standardized 

performance metrics. Utilities and regulators face uncertainty regarding how to validate AI 

algorithms under all possible fault scenarios. The absence of well-defined benchmarks slows 

deployment and discourages risk-averse stakeholders. 

5.8 Model Drift and Long-Term Maintenance 

As grid conditions evolve over months and years, AI models may experience “concept drift,” 

where their performance degrades due to changes in load patterns, DER penetration, equipment 

aging, or network reconfiguration. Maintaining long-term accuracy requires periodic 

retraining, model updating, and continuous monitoring. This increases operational workload 

and necessitates skilled labour, adding new maintenance responsibilities not present in 

traditional protection systems. 

6. Prospects & Future Research Directions  

6.1 Hybrid Physics–AI Models 

Future protection schemes are expected to integrate machine learning with physics-based 

models to combine the strengths of both domains. Hybrid frameworks that merge ANN/ML 

techniques with state estimation, Kalman Filters, Unscented Kalman Filters (UKF), or model-

based residual analysis can significantly enhance robustness. Such systems maintain the 

interpretability and stability of physics-based models while benefiting from the adaptability 

and pattern-recognition capabilities of AI. Research is also progressing toward physics-

informed neural networks (PINNs), which embed grid equations directly into the training 

process, ensuring physically consistent outputs even with limited datasets. 

6.2 Explainable AI  

Explain ability will be crucial for future deployment of AI-based protection. Techniques such 

as SHAP, LIME, attention-based visualization, and rule-extraction frameworks will enable 

engineers to understand the reasoning behind AI relay decisions. This transparency is vital for 

post-event analysis, regulatory auditing, and system operator trust. Future research aims to 

design inherently interpretable models tailored specifically for protection logic rather than 

retrofitting generic XAI tools. 
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6.3 PMU-Based Dynamic Protection 

High-resolution, time-synchronized data from Phasor Measurement Units will play a central 

role in next-generation protection. PMU-enhanced systems can support dynamic state 

estimation, real-time situational awareness, transient stability detection, and predictive tripping 
schemes. As PMU deployment expands into distribution networks and micro grids, research 

will shift toward distributed protection architectures that coordinate multiple PMUs using AI-

based decision agents and decentralized optimization. 

6.4 Digital Twin Integration 

Digital Twins of substations, feeders, and DER clusters will revolutionize how protection 

systems are designed and validated. AI-enabled Digital Twins can simulate a wide range of 

realistic fault scenarios, DER behaviours, and cyber–physical interactions. They allow safe 

offline testing of relay logic, algorithm training, and verification of coordination strategies. 

Future research will explore real-time co-simulation platforms where AI relays continuously 

learn from both physical and virtual environments. 

6.5 Standardization and Testing Frameworks 

For AI-based protection to become viable in operational grids, standardized certification 

frameworks are essential. This includes establishing benchmark datasets, simulation protocols, 

hardware-in-the-loop (HIL) testing environments, and performance evaluation metrics. 

International bodies such as IEEE, IEC, and CIGRÉ are expected to play key roles in 

formalizing these standards. Development of shared open-source datasets will also accelerate 

research and ensure fairness in model comparison. 

6.6 Edge Computing and AI Acceleration Hardware 

Advances in embedded AI processors, FPGAs, and edge-computing modules will support real-

time deployment of complex AI models in substations. Edge-based AI processing reduces 

communication delays and improves reliability by making decisions locally, even during 

network outages. Research is ongoing into low-latency model compression, pruning, 

quantization, and lightweight neural architectures specifically optimized for protection devices. 

6.7 Federated Learning and Collaborative Model Training 

Federated learning offers a promising approach for utilities to collaboratively train AI models 

without sharing raw operational data. Multiple substations or utilities can train a global model 

while keeping data locally stored, enhancing privacy and cybersecurity. This approach also 

increases dataset diversity, improving generalization. Future work will focus on the resiliency, 

synchronization, and robustness of federated frameworks under heterogeneous grid conditions. 

6.8 Cyber–Physical Resilience Enhancements 

AI-driven protection will increasingly incorporate mechanisms to detect and withstand 

cyberattacks, including adversarial ML defences, anomaly detection systems, and secure multi-
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agent coordination. Research will emphasize making models robust to manipulation, ensuring 

data authenticity, and developing self-healing protection schemes capable of isolating 

compromised components and maintaining operational continuity. 

6.9 Integration with Wide-Area Protection (WAP) 

Future protection architectures will likely employ multi-agent AI systems capable of utilizing 

wide-area data for coordinated relay actions across large geographical regions. These systems 

may use graph neural networks (GNNs) to model network topology, multi-agent reinforcement 

learning for coordination, and distributed decision-making to prevent cascading failures. 

7. Conclusion 

AI-based protection schemes hold significant promise to enhance fault detection, improve 

system resilience, and enable adaptive protection in dynamic modern grids. The integration of 

data-driven decision-making and intelligent fault analysis represents a major step toward 

autonomous and self-correcting power systems. However, prior to 2021, full-scale deployment 

of such AI-driven protection strategies remained largely experimental and confined to 

simulation environments or pilot projects. The limitations were strongly linked to insufficient 

real-time datasets, lack of standardization across utilities, heterogeneity of network 

infrastructure, dependence on communication systems, and regulatory requirements 

demanding complete transparency in protection decision-making. The reliability of AI 

algorithms under unseen operating conditions remains a critical issue, especially when 

considering rare faults, evolving grid configurations, and inverter-based disturbances. The 

“black-box” nature of many ML and deep learning models further restricts utility acceptance, 

as protection systems must be auditable and physically explainable. Moreover, cybersecurity 

threats—such as data poisoning, spoofing, and false data injection—pose new challenges to 

intelligent protection frameworks deployed in cyber-physical energy systems. To enable 

practical deployment, future research should prioritize hybrid physics-informed AI methods, 

where machine learning is supported by established protection principles and state estimation 

frameworks. Explainable AI (XAI) must be adopted to improve transparency, enabling 

operators to trace and justify every decision taken by the protection scheme. PMU-enabled 

real-time protection and Digital Twin environments offer promising platforms for model 

training, system validation, and experimental fault-injection studies without risking operational 

reliability. Additionally, regulatory bodies and utilities must collaborate to create benchmark 

datasets, validation protocols, and interoperability standards to evaluate AI-based protection 

tools under realistic conditions. 

Bridging the gap between theoretical potential and field implementation is essential for 

achieving safe, dependable, and intelligent AI-driven protection systems. As the grid evolves 

toward decentralization, renewable integration, and active distribution networks, the role of AI 

will gradually transition from a supplementary diagnostic tool to a core component of modern 

protection architecture. With continued advances in sensing technologies, communication 

infrastructure, and grid digitalization, AI-based protection systems can become an operational 

reality—contributing to a future of self-adaptive, self-healing, and resilient power networks. 
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