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ABSTRACT 

There are several known-plaintext attacks(KPA) on Stream cipher. Algebraic Attack is one kind of KPA. In this 
paper, we study the fundamental aspects of algebraic attack on Stream Cipher. We also study one of the 
important property related to Algebraic Attack, Algebraic Immunity. 
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I. INTRODUCTION 

 Stream ciphers play a crucial role in security in wireless communication. To produce the 

ciphertext bits, it does bitwise-XOR between plaintext bits and the pseudorandom 

bits(keystream). Stream cipher A5/1 was used in 2G mobile communication, and SNOW 3G, 

ZUC ciphers[1] are used for 4G and 5G mobile communication to restore confidentiality and 

integrity. The primary component of the Stream cipher is the keystream generator(KSG). Linear 

Feedback Shift Register(LFSR) is a very useful KSG. This is because of their low hardware cost, 

good statistical properties and good periods. Nonlinear Function is used with LFSR to resist the 

KSG from BMA attack. 

Attacks against stream cipher are another threat. Algebraic attack is one of the attacks that 

Courtois and Meier[2] on EUROCRYPT 2003. There are two fundamental models of stream 

ciphers: combiner generator and filter generator, where a nonlinear boolean function f takes 

important roles to generate pseudorandom bits. It can be observed [3] that If a function f or its 

complement 1 + f has low degree annihilators, one can construct equations of degree equal to the 

degree of the annihilators. So, the designer should not use such boolean functions of having low-

degree annihilators. To resist algebraic attack, algebraic immunity(AI) [4] takes a significant role. 

AI is nothing but the minimum degree annihilator between f or 1 + f . Details of the study on 

algebraic immunity will be discussed in a later section. 
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A) Literature Survey 

 Algebraic Attack was ideated by Courtois [2] in 2003. It found vulnerabilities in Toyocrypt, 
LILI-128 ciphers. This article[5] explains theoretical analysis regarding the algebraic immunity of 
nonlinear boolean functions. Later, Billet [6] explains the algebraic attacks on the cipher SNOW 
2.0 in time complexity 251. In addition to that, [7] improved the attack with time complexity 
2291. Besides, [8] mentions the algebraic attack on the Welch-Gong family of stream ciphers. 
The article [9] attacks Bluetooth stream cipher E0 with 279 time complexity using SAT solver, 
Binary Decision Diagram and Grobner Basis. In this article, we explain the basics of Algebraic 
Attack. 

II. PRE-REQUISITES 

Here, we study some definitions and properties of Boolean functions. Weight wt(x) of a vector 

x in Fn is the number of 

one count in x. Let f be a n variable boolean function defined as follows 

f : Vn → F2 

 

where 𝑉𝑛 is the domain of 𝑛 dimensional vector space and 𝐹2 is the binary field of 2 elements. The 

hamming distance between two boolean functions 𝑓 and 𝑔 of 𝑛 variable is wt(f + g). The degree 

of a Boolean function is defined as the length of the longest monomial in its polynomial 

representation. 

Algebraic normal form representation of a boolean function is defined as, if 𝑓 is 𝑛 variable Boolean 

functions in the polynomial form over the field 𝐹2 with 𝑛 many indeterminates 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑓 can 

be represented in the ring 𝔽2[𝑥1, 𝑥2, … , 𝑠𝑛]/< 𝑥1
2 − 𝑥1, 𝑥2

2 − 𝑥2, … , 𝑥𝑛
2 − 𝑥𝑛 > as follows: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑎0 +∑  

10

𝑖=1

𝑎𝑖𝑥𝑖 + ∑  

10

1≤𝑖<𝑗≤𝑛

𝑎𝑖𝑥𝑖 +⋯+ 𝑎𝑖1,…,𝑖𝑛𝑥𝑖1 …𝑥𝑖𝑛−1 + 𝑎1,…,𝑛𝑥1…𝑥𝑛 

where 𝑎0, 𝑎1, … , 𝑎1,…,𝑛 ∈ 𝔽2 are called the coefficient of the respective monomials. Boolean 

Function 𝑓1 and 𝑓2 can be defined as 𝑑(𝑓1, 𝑓2) =∣ {𝑥 ∈ 𝔽2
𝑛|𝑓1(𝑥) ≠ 𝑓2(𝑥)|. The Walsh coefficient 

of a vector plays a crucial role in the cryptographic boolean function. It can be defined as for any 

vector 𝑢 ∈ 𝔽2
𝑛 the value: 

𝑊𝑓(𝑢) = ∑  

𝑥∈𝔽2
𝑛

(−1)𝑓(𝑥)⊕<𝑢,𝑥> 

The nonlinearity of a Boolean function 𝑛𝑙(𝑓) is defined as 

𝑛𝑙(𝑓) = {min𝑑(𝑓, 𝑙) ∣ deg⁡(𝑙) ≤ 1} 
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It can also be defined to walsh coefficient like the following: 

𝑛𝑙(𝑓) = 2𝑛−1 −
1

2
max
𝑢∈𝔽𝜚

𝑛
 |𝑊𝑓(𝑢)| 

 

A) Algebraic Attack on NLFSR 

This section will describe the existing literature on generating the algebraic equation of low degree. 

With two basic models of LFSR-based stream ciphers like a nonlinear combiner and a nonlinear 

filter generator, this algebraic attack can be possible. Let the model use 𝑘 bit LFSRs, and each time, 

it is updated by a linear update function denoted by 

𝐿: 𝔽2
𝑛 → 𝔽2

𝑛 

 

 

 

Fig. 1.  Nonlinear Combiner Generator 

 

Let the initial state be 𝑺𝟎 = {𝑠0, 𝑠1, … , 𝑠𝑘−1}. At the 𝑡 - th clock, the keystream output will be 𝑧𝑡 =

𝑓(𝑆𝑡), 𝑡 ≥ 0, where 𝑓 is the nonlinear function. 𝑆𝑡 = 𝐿𝑡(𝑆0) denotes the state when the linear 

function 𝐿 will be operated t times on the state 𝑆0. The problem is to recover the initial state 𝑺𝟎 =

{𝑠0, 𝑠1, … , 𝑠𝑘−1}. If an adversary exploit the known plaintext attack, some 𝑙 many keystream 

bits(say, 𝑧𝑘1 , 𝑧𝑘2 , … , 𝑧𝑘𝑙 ) are known. So it is easier to generate a system of equations of degree 

equal to deg⁡(𝑓) as follows: 
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𝑓(𝐿𝑘1(𝑆0)) = 𝑧𝑘1

𝑓(𝐿𝑘2(𝑆0)) = 𝑧𝑘2
⋮

𝑓(𝐿𝑘𝑙(𝑆0)) = 𝑧𝑘𝑙

 

The time complexity of solving the system of equations increases if the degree of the nonlinear 

functions 𝑓 is high. One may like to generate low-degree equations using some weakness in the 

internal structure of nonlinear functions. We know that 𝑓(𝐿𝑡(𝑆0)) = 𝑓(𝑆𝑡) = 𝑧𝑡. The main 

idea[10] is to use low-degree multiples and annihilators of the nonlinear function 𝑓 to generate a 

low-degree equation. So multiplying 𝑓(𝑆𝑡) (usually high degree) with a well-chosen function 

𝑔(𝑆𝑡) such that the degree of 𝑓𝑔 is reduced. 

1. if 𝑧𝑡 = 1, any function g in 𝐴𝑁(𝑓) leads to 𝑔(𝐿𝑡(𝑆0)) = 0. 

2. if 𝑧𝑡 = 0, any function h in 𝐴𝑁(1 + 𝑓) leads to ℎ(𝐿𝑡(𝑆0)) = 0. 

So if we can collect the relations to all functions of degree at most 𝑑 (obviously < deg⁡(𝑓)) in 

𝐴𝑁(𝑓) + 𝐴𝑁(1 + 𝑓) for known 𝐿 keystream bits, we obtain a smaller degree equation on n 

variables 𝑥1, 𝑥2, … , 𝑥𝑛. So, we can recover the bits of the initial state by solving the multivariate 

polynomial system. 

Definition II.1. A Boolean function 𝑔 over 𝔽2
𝑛 is an annihilator 𝐴𝑁(𝑓) of a Boolean function 𝑓 over 

𝔽2
𝑛 if 

𝑓𝑔 = 0 

Definition II.2. The algebraic immunity 𝐴𝐼(𝑓) of a Boolean function 𝑓 over 𝔽2
𝑛 is the degree of the 

Boolean function 𝑔 over 𝔽2
𝑛 where 𝑔 is a nonzero function of minimum degree such that 𝑓𝑔 = 0 

or (1 + 𝑓)𝑔 = 0. 

It is known[7] that for any function 𝑓 over 𝔽2
𝑛𝐴𝐼(𝑓) ≤ ⌈

𝑛

2
⌉. 

Solving the system of multivariate algebraic equations is an important area in computational 

algebraic geometry and commutative algebra. The problem is NP-complete even if all the equations 

are quadratic and the base field is 𝔽2. Some existing techniques to solve those multivariate 

equations are XL, XSL, and Grobner basis algorithms (𝐹4, 𝐹5). 

B) Theoretical Results on Algebraic Immunity 

Theorem II.1. [4] Let 𝑓 ∈ 𝐵𝑛 (set of n variable Boolean functions) and 𝐴𝐼𝑛(𝑓) > 𝑑. Then 
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∑ 

𝑑

𝑖=0

(
𝑛
𝑖
) ≤ 𝑤𝑡(𝑓) ≤ ∑  

𝑛−(𝑑+1)

𝑖=0

 

Proof. Let 𝑓 has an annihilator 𝑔 of degree 𝑑. Let the ANF of 𝑔 is 

𝑎0 +∑  

10

𝑖=1

𝑎𝑖𝑥𝑖 + ∑  

10

1≤𝑖<𝑗≤𝑛

𝑎𝑖𝑥𝑖 +⋯+ 𝑎𝑖1,…,𝑖𝑑𝑥𝑖1 …𝑥𝑖𝑑  

where a's are from 𝔽2. We know that 𝑓(𝑥) = 1 implies 𝑔(𝑥) = 0, since 𝑔 ∈ 𝐴𝑁(𝑓). We will get 

𝑤𝑡(𝑓) many homogeneous equations on the a's. 

Solving the system of homogeneous linear equations, we can find annihilators 𝑔 of degree ≤ 𝑑 on 

nontrivial solutions. In trivial case, we will get all a's are equal to zero in which we are not interested 

as we are interested in nonzero 𝑔. 

Here, we have ∑𝑖=0
𝑑   (

𝑛
𝑖
) number of variables and 𝑤𝑡(𝑓) many equations. If the number of variables 

exceeds the number of equations, we will get nontrivial solutions. Thus, 𝑓 has no annihilator 𝑔 of 

degree 𝑑, implying the number of equations is greater than or equal to the number of variables. so 

there must be at least ∑𝑖=0
𝑑   (

𝑛
𝑖
) number of equations, i.e., 𝑤𝑡(𝑓) ≥ ∑𝑖=0

𝑑   (
𝑛
𝑖
). Similarly, when 

considering 1 + 𝑓, we get 𝑤𝑡(1 + 𝑓) ≥ ∑𝑖=0
𝑑  (

𝑛
𝑖
). From this we can say, 𝑤𝑡(1 + 𝑓) ≤ 2𝑛 −

∑𝑖=0
𝑑   (

𝑛
𝑖
), i.e., 𝑤𝑡(𝑓) ≤ ∑𝑖=0

𝑛−(𝑑+1)
  (
𝑛
𝑖
). 

It also gives alternative proof [4⌉𝐴𝐼(𝑓) ≤ ⌈
𝑛

2
⌉. The inequality in the above theorem will not be 

satisfied if 𝑑 > 𝑛 − (𝑑 + 1) ⇒ 𝑑 >
𝑛−1

2
⇒ 𝑑 ≥ ⌈

𝑛

2
⌉. It is observed that for any 𝑓 the inequality in 

the above theorem will not be satisfied if 𝐴𝐼𝑛(𝑓) > 𝑑 ≥ ⌈
𝑛

2
⌉. 

The reverse of the theorem is not always true. for example, the affine functions are balanced, i.e., 

their weight is 2(𝑛 − 1), but they have linear annihilators. 

Based on the above theorem, the following results give bound on 𝑤𝑡(𝑓), where 𝑓 of 1 + 𝑓 do not 

have annihilators of degree less than ⌈
𝑛

2
⌉. 

Corollary II.1.1. 𝐴𝐼𝑛(𝑓) = ⌈
𝑛

2
⌉ implies 

1. 𝑓 is balanced when 𝑛 is odd 

2. ∑
𝑖=0

𝑛

2
−1
  (
𝑛
𝑖
) ≤ 𝑤𝑡(𝑓) ≤ ∑

𝑖=0

𝑛

2   when n is even. 
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Theorem II.2. If 𝑛𝑙(𝑓) < ∑𝑖=0
𝑑   (

𝑛
𝑖
), then 𝐴𝐼𝑛(𝑓) ≤ 𝑑 + 1[4]. 

Theorem II.3. [11]Let 𝑓 ∈ 𝐵𝑛 and 𝐴𝐼𝑛(𝑓) = 𝑘. Then 𝑛𝑙(𝑓) ≥ 2(𝑛 − 1) − ∑𝑖=𝑘−1
𝑛−𝑘   (

𝑛 − 1
𝑖

) =

2∑𝑖=0
𝑛−𝑘   (

𝑛 − 1
𝑖

). 

From the above discussion, we get 𝑤𝑡(𝑓) many homogeneous linear equations using the a's. Let 

us denote the coefficient matrix of this system of equations by 𝑀. then 𝑀 has 𝑤𝑡(𝑓) many rows 

and ∑𝑖=0
𝑑   (

𝑛
𝑖
). The rank(say, 𝑟 ) of the matrix 𝑀, 𝑟 ≤ min {𝑤𝑡(𝑓), ∑𝑖=0

𝑑   (
𝑛
𝑖
)} 

1. If 𝑟 = ∑𝑖=0
𝑑   (

𝑛
𝑖
)}, then there is no annihilator of degree ≤ 𝑑. 

2. If 𝑟 < ∑𝑖=0
𝑑   (

𝑛
𝑖
)}, then there are annihilators of degree ≤ 𝑑. There will be ∑𝑖=0

𝑑  (
𝑛
𝑖
) − 𝑟 many 

linearly independent annihilators having degree ≤ 𝑑. 

For any Boolean function 𝑓, the number of annihilators and linearly independent annihilators are 

2𝑤𝑡(1+𝑓) − 1 and 𝑤𝑡(1 + 𝑓). Suppose 𝑀𝑛,𝑑(𝑓) is the matrix representation of boolean function 𝑓 

of 𝑛 variables and algebraic degree 𝑑. Number of rows and columns of the matrix are 𝑤𝑡(𝑓) and 

∑𝑖=0
𝑑   (

𝑛
𝑖
) respectively. An algorithm for Algebraic Immunity (AI) of Boolean function 𝑓 is given 

below. 

 

 

 

 

If 𝑓 is a balanced boolean function, the time complexity of the above algorithm is approximately 

(2𝑛−2)3. 

III. CONCLUSION 

In this article, we study Algebraic attacks on Stream Cipher and the Algebraic Immunity 

property. We understand that the Boolean function with a low algebraic degree is prone to 

cryptanalysis. As the algorithm mentioned above, to find algebraic immunity of the Boolean 

function, is exponential, it could be a better problem to propose an efficient algorithm than the 

existing one. 
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